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The flow about a spinning sphere moving in a viscous fluid is calculated for small 
values of the Reynolds number. With this solution the force and torque on the 
sphere are computed. It is found that in addition to the drag force determined 
by Stokes, the sphere experiences a force F, orthogonal to its direction of motion. 
This force is given by F, = na3pQ x V[1+ O(R)]. 
Here a is the radius of the sphere, 8 is its angular velocity, V is its velocity, p is 
the fluid density and R is the Reynolds number, R = pp-lVa. For small values 
of R, the transverse force is independent of the viscosity p. This force is in such 
a direction as to account for the curving of a pitched baseball, the long range of 
a spinning golf ball, etc. It is used as a basis for the discussion of the flow of a 
suspension of spheres through a tube. 

The calculation involves the Stokes and Oseen expansions. A representation of 
solutions of the Oseen equations in terms of two scalar functions is also presented. 

1. Introduction 
We shall show that a spinning sphere moving in a viscous fluid experiences a 

force orthogonal to its direction of motion, which we call a lift force. It is also 
orthogonal to the spin axis and therefore accounts for the curving of a pitched 
baseball, the long range of a spinning golf ball, etc. Since we shall calculate the 
lift for small values of the Reynolds number, our result will not apply to these 
phenomena, which occur for large Reynolds numbers. Our result applies either 
to the slow motion of a small sphere in a fluid, such as a solid particle in a suspen- 
sion, or to the motion of a satellite or other astronomical object in a gas of low 
density. We shall also show that the spin does not effect the drag force and that 
there is no correction to the retarding torque to the order we consider. Using 
these results we shall determine the motion of a sphere with given initial linear 
and angular velocities. We shall also consider the flow of a suspension of spheres 
through a tube, in the light of our results. 

Our results are obtained by solving the Navier-Stokes equations for the motion 
of the fluid around the sphere. We determine the first few terms, in the expansion 
in terms of the Reynolds number, of the solution. This expansion consists of two 
parts, the Stokes and Oseen expansions, which were introduced and used by 
Lagerstrom & Cole (1955), and Proudman & Pearson (1957). Our method of 
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solution is similar to theirs with the main difference being that we obtain directly 
the expansion for the velocity and the pressure rather than for the stream func- 
tion. This is necessary because our flow is asymmetric and therefore there is no 
stream function which describes it. Those authors, as well as Stokes (1851) and 
Oseen (1910, 1913) considered the motion of a non-spinning sphere, about which 
the flow is axially symmetric and describable by a stream function. The present 
example appears to be the first asymmetric three-dimensional case for which the 
flow at small Reynolds numbers has been found by using these expansions. In 
the appendix we prove that it is possible to represent any solution of the Oseen 
equations in terms of two scalar functions. 

2. Formulation 
We wish to consider the motion of a sphere of radius a, velocity V and angular 

velocity 8 through an incompressible viscous fluid of density p and viscosity 
coefficient p. The fluid is assumed to be at rest far from the sphere. It is con- 
venient to introduce a co-ordinate system with its origin at the centre of the 
sphere, with the negative x’-axis pointing in the direction of V and with the 
(XI, y‘)-plane containing 8. In this co-ordinate system the flow is steady and the 
fluid has the velocity ( V ,  0,O) at infinity while the velocity of the surface of the 
sphere r’ = a is S2 x r‘. We denote the velocity in the fluid by u‘ and the pressure 
in the fluid by p‘, taking the pressure at infinity to be zero. Now u’ and p‘ satisfy 
the time independent Navier-Stokes equations, the equation of continuity, the 
condition of no slip at the sphere and the appropriate conditions at infinity. 
These equations and conditions are 

and 

~ A u ’  - Vp’ = p(u‘ . V) u’, 
V.U’  = 0, 

u’ = 8 x r’ a t  r’ = a, 

u’ = (V,O,O) at r’ = co, 
p‘ = 0 at r’ = co. 

Let us introduce the dimensionless Reynolds number R as well as the dimen- 
sionless quantities u, p, w, x, y, z and r, defined by 

x = a-lx’, y = a-ly’, = a-lz’, r = a-lr’, 

p = ~V-lp-1p‘, u = V-~U’, o = aV-lS2, R = pp-ll‘a. 

Upon introducing these variables into (1)-(5), we obtain 

and 

AU - Vp = R(u. V) U, (7 )  

v . u  = 0, ( 8 )  

u = w x r  at r = 1 ,  (9) 

u = (1 ,0 ,0)  at r = co, (10) 

p = o  at r = 03. (11) 

We seek the solution u and p of (7)-( 11) as expansions in R valid for small values 
of R. 
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3. Stokes expansion 
The Stokes expansion of the solution is of the form 

u = u0 + Rul + o@), (12) 

P = P,+RP1+4R). (13) 

Further terms beyond those shown involve powers of log R in addition to powers 
of R, as has been demonstrated by Proudman & Pearson (1957) for the non- 
rotating sphere. However, only the terms shown in (12) and (13) will be needed 
here. We now insert (12) and (13) into (7)-(9) and equate coefficients of Ro in 
each equation, obtaining 

Auo - Vpo = 0, 

v.uo = 0)  

(14) 

(15) 

and u 0 = o x r  at r =  1. (16) 

From the coefficients of R1, we obtain 

Aul- Vp1= (u0. V) uO, 

v .u ,  = 0, 

and ul= 0 at r =  1. (19) 

We have not required of the Stokes expansion that it satisfy (10) and (ll),  
the conditions at infinity, because this expansion is not uniformly valid in the 
neighbourhood of infinity. Therefore conditions at infinity on the individual 
terms cannot be obtained in the same way. Instead we must obtain another 
expansion, the Oseen expansion, which is valid at infinity. Then by matching 
the two expansions the necessary conditions will be obtained. To obtain the 
Oseen expansion we must first introduce stretched variables. 

4. Stretched variables 
Let us introduce the new stretched variables X ,  Y ,  2 and s and the new 

functions U and P, defined by 

X = R x ,  Y =Ry,  Z = R z ,  s = R r ,  
U ( X ,  Y ,  2, R )  = u(R-’X, R-lY, R-lZ, R) ,  

P ( X ,  Y ,  Z ,  R )  = R-lp(R-lX, R-lY, R-lZ, R). 

In  terms of these variables, equations (7)-( 11)  become 

and 
29 

AU-VP = (U.V)U, 

v.u = 0, 

U =  R - l o x s  at s =  R, (23) 

U = (1 ,0 ,0)  at s = 00, (24) 

P = O  at s = co. (25 1 
Fluid Mech. 11 
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5. Oseen expansion 
The Oseen expansion of the solution U and P of (21)-( 25) is of the form 

U = Uo + RU, + o(R), 
P = Po + RP, + o(R). 

Upon inserting (26) and (27)into (2l) ,  (22), (24)and (25) and equating coefficients 
of Ro, we obtain 

Avo-VP, = (Uo.V)U,, (28) 
v.uo = 0, . (29) 

U, = (1,0,0) at  s = co, (30) 

and Po = 0 a t  s = co. (31) 

Equating coefficients of R1 yields the equations 

and 

AU1- VP1= (Uo. V) U1+ (U,. V) Uo, (32) 

v.u, = 0,  (33) 

U, = (O ,O,O)  at s = co, (34) 

PI = 0 at s = co. (35) 

We have not inserted the Oseen expansion into the condition (23) on the sphere 
because we do not expect this expansion to be uniformly valid there. Con- 
sequently this condition must be replaced by another condition. This latter 
condition is that the Stokes and Oseen expansions must match since they are 
both expansions of the same solution expressed in different variables. This 
matching will be explained later. 

We note that equations (28)-(31) satisfied by U, and Po are the same as the 
corresponding equations for U and P. Therefore we cannot expect to solve them 
more readily than we could solve the original equations. However, we observe 
that a particular soldtion for U, and Po is 

The Oseen expansion is based upon choosing this particular solution for U, and 
Po, With this choice (32) simplifies to 

au 
1 -  ax AU,-VP --I. 

Before determining U ,  and P,, let us explain the principle of matching. 

6. Matching 
The matching principle is that two different asymptotic expansions of a given 

function must be asymptotically equal in their common domain of validity, if 
any. We assume that the Stokes expansion is valid from the sphere out to some 
large distance. We also assume that the Oseen expansion is valid from infinity 
in to  some small radius in the stretched variables. However, this radius is 
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considered to be large in the unstretched variables. Then the common domain 
of validity is a spherical shell within which the unstretched radius is large but 
the stretched radius is small. Therefore if the Stokes expansion is expanded for 
large values of the radius r while the Oseen expansion is expanded for small 
values of the stretched radius s, the resulting expansions must be asymptotically 
equal. This principle is utilized by alternately determining terms in the two 
expansions and matching them to the previous terms. 

As a first result of applying this principle we can determine the behaviour of 
the zeroth-order Stokes approximation, u, and p,, for large values of r .  Since 
U, and Po are constant, the result is easily seen to be 

and 

u, = U,+o(l)  as y-tco, 

p ,  = o(1) as r+m.  

(39) 

(40) 

7. Zeroth-order Stokes approximation 
The solution u, andp, of (14)-( 16), (39) and (40) is unique and can be found by 

the method explained by Lamb (1945, pp. 595, 596). Since the equations are all 
linear, the solution is just the sum of the known solution for a uniform flow past 
a non-rotating sphere and the known flow produced by a rotating sphere in a 
fluid at rest at infinity. Thus we have 

3x 1 1 
u o =  1---- (1 ,0 ,0)--  --- r+- -oxr ,  ( :r L 3 )  4 (r3 r:) r3 

3x I), = -- 
2r3. 

8. First-order Oseen approximation 
To determine U, and P, we must solve (38), (33)-(35) and employ the matching 

condition. We begin by taking the divergence of (38) and using (33), from which 
it follows that AP, = 0. Then, following Lamb (1945, p. 610), we introduce a scalar 
4 and a vector W and write 

Since P, is harmonic we require that q5 also be harmonic, i.e. 

Then (38) and (33) become two equations for W: 

V.W = 0. (47) 

In  the appendix we prove the following theorem. 
29-2 
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Theorem. If W satisfies (46) and (47) then there exist two scalar functions 
*and xsuchthat w = (1 ,0 ,0)  x V$+V x [(1,0,0) x 0x1 (48) 

a 
ax A$--$ = 0, and 

a 
ax  AX--^ = 0. 

Let us define X I ,  which also satisfies (50), by 

l a  

ax x =--. 
Then (48) can be written as 

Those special solutions of the form (48) or (52) for which $ = 0 were given by 
Lamb (1945, p. 611). 

To construct U, and P, let us make the following choices of q5, 1/. and x', which 
must be solutions of (45), (49) and (50) respectively: 

q5 = 4 8 ,  (53) 
$ = 0, (54) 

and X I  = (B/s) exp [&(X - s)]. (55 )  
We now compute U, and P, from (43) and (44), using (52)-(55) and employ the 
matching condition. This yields A = B = +. Thus U, and P, are found to be 

(56) 

3 3 
- 2 ~ 3  4s 

U - -(X, Y,2)--exp[~(X-s)](1,o7o)-$exp[~(X-s)] 

and 
3X p 

1 - 283' 

. I  

(57) 

This solution satisfies the condition at infinity (34) and (35). If any other choice 
were made for q5, $ and X I ,  the matching condition or the conditions at infinity 
would have been violated. 

9. First-order Stokes approximation 
To determine u1 and pl we must solve (17)-( 19) and employ the matching 

principle. We shall first find a particular solution ul0 and plo of (17) and (18). 
Then we shall add a solution uI1 and p,, of (1 8) and the homogeneous form of (17) 
in order to satisfy the boundary condition (19). Finally we shall show that the 
sum of the two solutions so obtained satisfies the matching condition so no other 
solution need be added. To begin, we compute the inhomogeneous term (u,. 0) u, 
which occurs in (17). By using (41) for u, we obtain 

(u0.V)uo = - --+---+- (1 0 O ) + -  --+-+----- i; [ rt ,". ,"6 rt] 9 9 16 3 [ 4 3 4 2 1  r3 r4 r5 r6 r8 

12 12 20 24 4 +--- r - 3 x - - -  o x r  +x2 - -_ -_  
( r5  r6 r7 r8 rlo)] (rt  :6) 

--4- 3wzsinp 1 (q-i)r-7[2-s-p] os inp  4 3 1 ( 0 , 0 , 1 ) + ~ w x ( w x r ) .  1 

(58 )  Here ,8 is the angle between S2 and U,. 
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Let us now take the divergence of (17) and make use of (18) and (58). Then 
we find that 

Ap1= -V.[(U,.V)U~] = ---+- 
(rt r t  r:o)] 

(59) - 

A particular solution of (59) is 

6 2  1 12 12 1 wzsinp 3 w2 (o .r )2  plo = 32 [ - - - _ _ _  r2  r4  3r6+++,d-ji)]- 8- (&) -2r4+t- 

(60) 

(61) 

We now insert (60) into (17) and obtain for u1 the equation 

Au, = Vp,, + (u, . V) u,. 

A particular solution of (61) is 

o x  ( o x r )  w2 ( ~ . r ) ~  
r. - - - 

4r4 & . 4 r + 7  

By direct computation we find that ul0 satisfies (18). 

such that ul0 + ull satisfies (19). Thus we require that 
Next we find ull and pll satisfying the homogeneous form of (17) and (18) and 

u,, = -u,, at r = 1. (63) 

By the method of Lamb (1945, pp. 595, 596), we find that 

3 1 1  7 5  
32 [r3 r5  (r: :5) ( r5 r7)] 

(1,0,0)+- - + - - 3 x  --- -x2 -+- r 

(64) 

(65) 
9 x 7 1 3x2 wzsinp w2 3 ( ~ . r ) ~  p,, = ---+- 

and 16r3 16(r3 y 5 )  4r3 4r3 4r5 ’ 

Upon adding ul0 to ull and plo to pll, we obtain u1 and p,. (There is no need 
here to write out the resulting expressions for u1 and p,, but we shall presently 
refer to them as (66) and (67), respectively.) By employing the matching pro- 
cedure we find that this solution matches the Oseen solution, and therefore it 
is not necessary to add anything else to it. 
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10. Lift, drag and torque 
We shall now use the two terms of the Stokes expansion which we have found 

to compute the force and torque on the sphere. To do so we must first determine 
f, the force per unit area exerted by the fluid on the surface of the sphere. Lamb 
(1945, p. 596) gives an expression for f which becomes in dimensionless variables 

f = -  --p+ --- u+-V(r.u) . ?[ (:r :) r l l  

Upon using (41) ,  (42), (66)  and (67)  in (68)  and integrating (68)  over the surface 
of the sphere we obtain the total force F which is given in terms of the velocity V 
of the sphere by 

F = - 6napV( 1 + #R) + napRo x V + o ( a p V R ) .  (69)  

The component of F in the direction - V is the drag force F, and the component 
normal to V is the lift force F,. From (69)  and the definition ( 6 )  of R, these 
components are 

(70)  

and F, = na3pQ x V [ l  + O(R)] .  (71)  

F, = - 67rapV[1+ #R + o(R)] 

It is interesting to note that the leading term in F, is independent of p and is 
similar to the lift formula for two-dimensional potential flow about an airfoil. 
By integrating r x f over the surface of the sphere we obtain for the torque T 
on the sphere the result T = - 8npa3Q[1 + o(R)] .  ( 7 2 )  

The term - 67rapV in F, was calculated by Stokes (1861) and the second term 
- z n p a V R  by Oseen (1910, 1913). The expression for F,, which is new, is the 
main result of this paper. The term - 8npa3Q in T was obtained by Kirchhoff 
(1876). Our results show that the spin causes no correction to the drag of order 
R and that there is no correction to the torque of order R. 

11. The motion of a spinning sphere 
Let us now consider the motion of a sphere with initial velocity Vo and initial 

angular velocity Q,, in a viscous fluid initially at rest. Let M denote the mass of 
the sphere, I its moment of inertia about any diameter, V(t )  its linear velocity 
and Q ( t )  its angular velocity about a diameter a t  time t .  We assume that the 
force and torque on the sphere are given by (69)  and (72 ) ,  ignoring the terms 
o ( a p V R )  in (69)  and o(R) in (72).  Then the equations of motion of the sphere are 

M -  = - 6 n a p ( l + # R ) V + n a 3 p Q x V  (73)  
dV 
at 

and (74)  

The solution of (74)  is 
st(t) = ~ , e x p [ - ~ t ] .  8npa3 

(75)  
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V(l)( t )  = V#) exp [ - 6nap( 1 + #R) M-It]. 

IV2)( t ) ]  = IVh2)l exp [ - 6nap( l+  fjR) M-lt]. 

455 

If V(l)( t )  denotes the component of V ( t )  parallel to 8,) (73) yields 

(76) 

(77) 

V@)( t )  = IV@)(t)/ v(t). i78) 

Let P ( t )  denote the component of V ( t )  perpendicular to 8,. Then (73) yields 

Now we define the unit vector v(t) by 

From (73) it  follows that v(t) satisfies the equation 

dv na3p 8npa3t 
- dt - - --exp[-7]80xv. M 

The solution of (79) is, in rectangular components, 

w ( t )  = [cos @(t), sin B ( t ) ] .  

Here the angle B ( t )  is given by 

(79) 

From these results the path of the sphere can be obtained easily by integration. 

12. Flow of a suspension through a tube 
When a viscous fluid containing suspended particles flows through a circular 

tube, the particles are not uniformly distributed over the cross-section of the 
tube. Observations on blood flow in narrow capillaries indicate that the red 
blood corpuscles concentrate near the axis of the capillary. This concentration 
effect was explained hydrodynamically by supposing that the fluid exerted an 
axially directed transverse force on the particles. However, when the flow was 
determined by solving the linearized Stokes equations, no transverse force was 
found on a sphere in a shear flow, such as the Poiseuille flow in a circular tube.7 
A similar calculation of the force on an ellipsoid in a shear flow by Jeffery (1922) 
also yielded no transverse force. 

To account for the effect, Jeffery proposed a new principle-that a particle 
moves a t  that distance from the axis which minimizes the rate of energy dissipa- 
tion in the flow. This principle was subsequently rediscovered and generalized 
and has become a cornerstone of irreversible thermodynamics. If correct, 
Jeffery’s principle should be deducible from the Navier-Stokes equations, just 
as all thermodynamic principles are deducible from more detailed theories. To 
apply it to the present problem, Jeffery utilized the result of Einstein (1906) for 
the excess dissipation produced by the introduction of a sphere into a uniform 
shear flow. Einstein has shown that the excess dissipation is proportional to 

t This result can be obtained without calculation by decomposing the incident shear 
flow into two parts, one symmetric and the other antisymnietric about any plane through 
the centre of the sphere and containing the direction of the incident flow through the 
centre. By symmetry, neither of these flows can yield a force on the sphere normal to 
the plane. 
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the square of the vorticity of the incident flow a t  the particle. Since the velocity 
distribution in the Poiseuille flow is parabolic, the vorticity is proportional to 
the distance from the axis and the excess energy dissipation to the square of the 
distance from the axis. Thus Jeffery concluded that a particle would move along 
the axis. 

This same conclusion was arrived at by Tollert (1954) and Saffman (1956). 
Tollert observed that, according to Einstein, a sphere in a shear flow u rotates 
with the angular velocity S2 = &V x u. Furthermore, according to the calculation 
of Simha (1936), a sphere of radius a in a tube of radius R, lags behind the flow 
with the relative velocity V = -$(a2/Ri) U,, where U, is the flow velocity at the 
centre of the tube. Then Tollert postulated a transverse force of the form (71) 
with another factor instead of gn-. In  a Poiseuille flow, V x u = - 2 b  x U,/R& 
where b denotes the radial vector from the axis. If the correct formula (71) for 
the transverse force on a sphere at radial position b were used, Tollert’s argument 

(82) 
would yield the result 

F, = - 2n-a5pUib/3R$ 

Saffman derived a similar result by approximate solution of the flow equations, 
obtaining the numerical factor 7.7($n-) instead of @r. The result (82) yields a 
force toward the axis which vanishes on the axis, in agreement with Jeffery’s 
conclusion. 

Recently Segre & Silberberg (1961) measured very accurately the distribution 
of spherical particles in a fluid flowing in a circular tube. They found that the 
particles do not concentrate along the axis. Instead they concentrate at the 
radius b, equal to about BR,. Thus the previous observations were inaccurate, 
and the theories of Jeffery, Tollert and Saffman are incomplete. Consequently 
the formula (82) is incorrect, or at best incomplete. This formula and the theories 
referred to only account for the inward motion of spherical particles lying outside 
the radius b,. 

In  order to understand why (82) fails, we must recognize that it is based upon 
(71 ) ,  which applies to a sphere in a uniform flow. But the Poiseuille flow in a 
tube is not uniform. It is a shear flow with a parabolic velocity profile. The 
gradient of this profile accounts for the spin of the sphere and the curvature 
of the profile accounts for the lag. However, these are evidently not the only 
ways in which the non-uniformity of the flow affects the sphere. We therefore 
attempted to calculate the flow about a spinning sphere in a shear flow with 
a parabolic velocity profile, and from it to compute the force and torque 
on the sphere. We followed the procedure employed in the preceding sections 
and had no difficulty in obtaining the zero-order Stokes solution. We began to 
calculate the first-order Stokes solution and obtained some terms in it, but we 
did not complete the calculation because the labour became prohibitive. How- 
ever, from the terms we calculated, we computed the transferse force, which 
came out to be given by (82). But there are many more terms in the force which 
we did not calculate. We expect that these further terms would modify (82) in 
such a way as to account for the observed effect, but this is merely a conjecture. 
This conjecture is strengthened by the fact that (82) yields a force of the correct 
order of magnitude to account for the observed effect, as we shall show below. 
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We have also examined the minimum-dissipation-rate analysis of Jeffery 
and found that it utilizes the linearized flow about a sphere in an unbounded 
uniform shear flow. But to zero order in the Reynolds number, the correct flow 
is the linearized flow about a sphere in a Poiseuille flow in a tube. If this zero- 
order flow were used in calculating the rate of energy dissipation, it might yield 
the correct equilibrium distance of the sphere from the axis. 

In  view of the experimental results, let us now modify (82) so that it gives an 
outward force forb < b,. The simplest way to do this is to multiply the right-hand 
side of (82) by ( b  - bo)/b,. With this factor the force is inward for b > 6, and out- 
ward forb < b,. Of course this expression for the force is not correct in detail, but 
it is qualitatively correct. 

We shall now calculate the trajectory of a sphere subject to'this force. Its 
radial velocity dbldt  can be determined by equating the drag force 6 m p d b l d t  
to FL. Thus 

Now the axial velocity of the sphere dxldt is practically equal to the flow velocity 
Uo( 1 - b2Ri2).  Thus we have, upon dividing, 

dx 9 R i p b o ( R i  - b2)  
__~._ 

db - u4pU, b(b  - b,) ' 

We now integrate (84) from x = 0, denoting the initial radius of the particle at  
x = 0 by b,. Thus we obtain 

For b nearly equal to b,, (85) becomes 1 

Upon solving (86) for b and introducing the length x, we obtain 

Here x, is defined by 
b - b, = (b ,  - b,) exp [ - x/xo]. 

9R&u( 1 - bi  Rc2) 
xo = - 

u4pu0 
The concentration of particles c(b,  x) in the steady state is easily found, from 

the conservation equation, to be given by 

By using (83) in ( 8 9 ) ,  setting c(b,, 0 )  = c1 and then using (87) to eliminate b, we 
obtain 
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Outside the range determined by the extreme initial radii 6, = 0 and b, = R,, 
which is given by the inequalities in (go), the concentration is zero. The con- 
centration measured by Segre & Silberberg is in qualitative agreement with 
(90). Furthermore, they have found that their concentration data depend on x 
only through the ratio x/x,, where xo is given by (88). This agreement shows that 
the force is of the order of magnitude given by (82). Since this force is of the first 
order in the Reynolds number, the actual force is also of this order and pre- 
sumably would be obtained by completing the calculation of the first-order 
Stokes approximation to which we referred above. 

The research in this paper was partially supported by the Office of Naval 
Research. 

Appendix: on the solution of the Oseen equations 
We wish to prove that every solution W of the reduced Oseen equations (46) 

and (47)  can be represented in the form (48) in terms of two scalar functions $ 
and x satisfying (49) and (50). To do this we first rewrite (48) in component form 
after setting W = (W,, W,, W,) and obtain 

0% W,, w,) = (xuu +x z m  - $2 - xxy, &/ - XX& (A 1)  

We shall show that we can determine x and $ to satisfy (A 1). First we note that 
if x satisfies (50) then xuu+xzz = xx-xxx. Then the first component of ( A l )  
becomes an ordinary differential equation for x which has the solution 

Here a and b are two ' constants' of integration. 

see that A,x = W, while (46) shows that A, W, = W,, - W,,,. Thus (A 2) yields 
To determine u and b we apply A, = i32/i3y2 + to (A 2). From (A 1) we 

W, = ex/: e-5/'(W& 0 - W,J d y d [ +  e"A2a + A2b. 

By evaluating the integral in (A 3) we obtain 

&. = % + ex[A2a(y7 z ,  - &z(O, Y, z ) ]  + Azb(y7 z ,  + F&x(o7 Y7 2) - e(07 Y7 2). (A 4, 

In  order that (A 4) hold for all values of x, y, and z it is necessary that a and b 
satisfy 

and 

These equations have solutions which are determined up to additive harmonic 
functions. Thus (A2) determines a class of functions x which satisfy the first 
equation of (A 1). 

Let us now use the second and third components of ( A l )  to determine $. 
These components yield $z = - W, - xxv and kU = W, + xxz. The integrability 
condition qkuZ - $zy = 0 is then 

(A 5 )  

(A 6) 

A,a(y, 2) = W,,(O, Y7 4 
'2 b(y7 ') = K(O7 Y7 z, - Fx(O7  Y> z). 

K + xxzz + w,, + xzvv = 0. (A 7 )  
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Since x,, + x,, = W, by (A l),  (A 7 )  becomes W,, + W,, + W,, = 0 and this equation 
is satisfied according to (47 ) .  Thus we may compute $ from the relation 

= $(x, 090) + j U [ W X >  T ,  0) + X,B(X7 TI,O)l dTI 
0 

- jpm Y, (I) + x x y ( x ,  Y, 5)1 d5. (A 8) 

We have now determined x and $ that satisfy (A 1 ) .  We have also verified that 
x satisfies (50) since we have shown that X , , + X ~ ~  = W, and x-xzX = W, so 
AX - X, = 0. Therefore we need only verify that $ satisfies (49). To do so we first 
observe that $zB = ( - W, - xu,), and $,u = (1% + xXe),. Thus pUv + @z, = W,, - W2#. 
Next, from (A 8) we have 

-s,” [Kx - w,xz + x x x ,  - Xxxx,l  d5. (A 9 )  

From ( 4 6 ) ,  - W,,, = A, W, while from (50) and (A 1 )  xzxz - xxxxz = A,x,, = W,,,. 
Similarly, W2x- W,,, = A, W, and ~ z x v - ~ x x z y  = W,,,. Furthermore, from (47 )  
W,,, = - (15, + W,), and W,,, = - (lV,, + W& Then (A 9 )  becomes 

Let us now require that $(x, 0, 0), which is so far arbitrary, satisfy the equation 

$,@, 0 , O )  - kX,h 0,O) = %,(., 0 , O )  - 070). (A 11) 

Then (A 10) shows that @,- $,, = W,, - 
$,g + $zB. Thus $ satisfies (49) and the theorem is proved. 

which we saw above is equal to 
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